On McMullen’s and other inequalities for the Thurston norm of link complements
نویسندگان
چکیده
In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an inequality for all points of the Thurston norm, if the manifold is a link complement. We compare these two inequalities on two classes of closed braids. In an additional section we discuss a conjectured inequality due to Morton for certain points of the Thurston norm. We prove Morton’s conjecture for closed 3-braids. AMS Classification 57M25; 57M27, 57M50
منابع مشابه
Link Floer Homology and the Thurston Norm
We show that link Floer homology detects the Thurston norm of a link complement. As an application, we show that the Thurston polytope of an alternating link is dual to the Newton polytope of its multi-variable Alexander polynomial. To illustrate these techniques, we also compute the Thurston polytopes of several specific link complements.
متن کاملNon–commutative Multivariable Reidemeister Torsion and the Thurston Norm
Given a 3–manifold the second author defined functions δn : H (M ;Z) → N, generalizing McMullen’s Alexander norm, which give lower bounds on the Thurston norm. We reformulate these invariants in terms of Reidemeister torsion over a non– commutative multivariable Laurent polynomial ring. This allows us to show that these functions are semi-norms.
متن کاملThe Thurston Norm, Fibered Manifolds and Twisted Alexander Polynomials
Every element in the first cohomology group of a 3–manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3–sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Tur...
متن کاملA note on the Young type inequalities
In this paper, we present some refinements of the famous Young type inequality. As application of our result, we obtain some matrix inequalities for the Hilbert-Schmidt norm and the trace norm. The results obtained in this paper can be viewed as refinement of the derived results by H. Kai [Young type inequalities for matrices, J. Ea...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کامل